


Pilot-to-close check valve CAPACITY: 40 gpm / CAVITY: T-2A



sunhydraulics.com/model/COFA





This valve is a spring biased closed, pilot-to-close check cartridge that has a 1.8:1 pilot ratio. The valve allows flow from port 1 to port 2 and blocks reverse flow. Pressure at the pilot port opposes pressure at port 1 at a ratio of 1.8:1. This valve is most often used in regeneration circuits.

# TECHNICAL DATA NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

| Cavity                                    | T-2A                      |
|-------------------------------------------|---------------------------|
| Series                                    | 2                         |
| Capacity                                  | 40 gpm                    |
| Maximum Operating Pressure                | 5000 psi                  |
| Pilot Ratio                               | 1.8:1                     |
| Maximum Valve Leakage at 110 SUS (24 cSt) | 1 drops/min.              |
| Valve Hex Size                            | 1 1/8 in.                 |
| Valve Installation Torque                 | 45 - 50 lbf ft            |
| Model Weight                              | 0.50 lb.                  |
| Seal kit - Cartridge                      | Buna: 990-202-007         |
| Seal kit - Cartridge                      | EPDM: 990-202-014         |
| Seal kit - Cartridge                      | Polyurethane: 990-002-002 |
| Seal kit - Cartridge                      | Viton: 990-202-006        |

#### **OPTION SELECTION EXAMPLE: COFAXCN**

| CONTROL          | (X) | CRACKING PRESSURE         | (C) | ) SEAL MATERIAL (N) |  | MATERIAL/COATING |                             |
|------------------|-----|---------------------------|-----|---------------------|--|------------------|-----------------------------|
| X Standard Pilot |     | <b>C</b> 30 psi (2 bar)   |     | N Buna-N            |  |                  | Standard Material/Coating   |
|                  |     | A 4 psi (0,3 bar)         |     | E EPDM              |  | /AP              | Stainless Steel, Passivated |
|                  |     | <b>B</b> 15 psi (1 bar)   |     | V Viton             |  | /LH              | Mild Steel, Zinc-Nickel     |
|                  |     | <b>D</b> 50 psi (3,5 bar) |     |                     |  |                  |                             |
|                  |     | <b>F</b> 100 psi (7 bar)  |     |                     |  |                  |                             |
|                  |     | J 135 psi (9,5 bar)       |     |                     |  |                  |                             |

## **TECHNICAL FEATURES**

- Nominal pilot ratio is 1.8:1. This means that a pressure of 1000 psi (70 bar) at the pilot port will close a valve against a pressure of 1800 psi (125 bar) at port 1. Any decay or loss of pilot pressure could allow the valve to open, even if it is a momentary decay or loss.
- Pressure at the port 2 area directly opposes pilot pressure.
- Reverse flow through the valve from port 2 to port 1 is not possible under any condition.
- With equal pressures at all ports the valve is closed.
- In the begining the CO\*A's did not have a positive seal on the pilot pistons and the CO\*B's did. Now the CO\*A's are positively sealed and the 2 valves are mechanically identical. CO\*A's are more readily available and cost less.
- Cartridges configured with EPDM seals are for use in systems with phosphate ester fluids. Exposure to petroleum based fluids, greases and lubricants will damage the seals.
- Corrosion resistant cartridge valves are intended for use in corrosive environments and are identified by the model code suffix /AP or /LH (see CONFIGURATION section). For further details, please see the Materials of Construction page under TECHNICAL RESOURCES.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.

#### Typical Pressure Drop Typical Pressure Drop 200 15 12 раг = psi 150 9 100 II XEN 6 ۵. ۵. 50 XĖN з ТΝ I XAŃ XAN ο 0 0 40 80 120 160 10 20 30 40 Q = GPM $\mathbf{Q} = \mathbf{L}/\min$

## PERFORMANCE CURVES