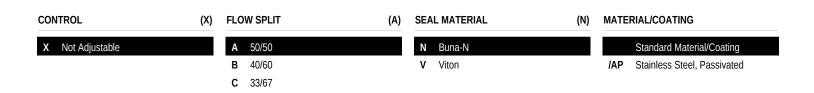

High accuracy flow divider valve

CAPACITY: .6 - 3 gpm / CAVITY: T-31A

sunhydraulics.com/model/FSBD


Flow dividers are sliding-spool, pressure-compensated devices used to split oil flow to two different branches of a circuit in a designated ratio. These valves are suitable for applications that use the following: unidirectional hydraulic motors, hydraulic cylinders where flow division in one direction only is required, and multiple circuits that are serviced from one pump supply.

TECHNICAL DATA NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-31A	
Series	1	
Capacity	.6 - 3 gpm	
Maximum Operating Pressure	5000 psi	
Divisional Accuracy at Max Input Flow	±2.5%	
Divisional Accuracy at Minimum Input Flow	±4.5%	
Pressure Drop at Maximum Rated Input Flow	250 psi	
Pressure Drop at Minimum Rated Input Flow	30 psi	
Rated Input Flow with 33/67 Split	.45 - 2.2 gpm	
Rated Input Flow with 40/60 Split	.5 - 2.5 gpm	
Rated Input Flow with 50/50 Split	.6 - 3 gpm	
Valve Hex Size	7/8 in.	
Valve Installation Torque	30 - 35 lbf ft	
Model Weight	0.34 lb.	
Seal kit - Cartridge	Buna: 990-031-007	
Seal kit - Cartridge	Polyurethane: 990-031-002	
Seal kit - Cartridge	Viton: 990-031-006	

©2024 Sun Hydraulics 1 of 2

OPTION SELECTION EXAMPLE: FSBDXAN

TECHNICAL FEATURES

- All flow divider and divider/combiner cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size).
- Operating characteristics cause the leg of the circuit with the greatest load to receive the higher percentage of flow in dividing mode. If a rigid mechanism is used to tie actuators together, the lead actuator may pull the lagging actuator and cause it to cavitate.
- In applications involving rigid mechanisms between multiple actuators, operating inaccuracy will cause the eventual lock-up of the system. If the mechanical structure is not designed to allow for the operating inaccuracy inherent in the valve, damage may occur.
- In motor circuits, rigid frames or mechanisms that tie motors together, and/or complete mechanical synchronized motion of the output shaft of the motors, either by wheels to the pavement or sprockets to conveyors, will contribute to cavitation, lock-up and/or pressure intensification.
- Variations in speed and lock-up can be attributed to differences in motor displacement, motor leakage, wheel diameter variance and friction of wheels on the driving surface.
- This valve is a divider only; any attempt to flow backwards through the valve is not advised.
- Dividers with unequal ratios have the higher flow at port 4.
- Below the minimum flow rating there is not enough flow for the valve to modulate. It is effectively a tee. If flow starts at zero and rises, there will be no dividing control until the flow reaches the minimum rating.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.

PERFORMANCE CURVES

Split	Input Flow	Rated Accuracy	Maximum Possible Flow Variations		
	·		High Flow Leg	Low Flow Leg	
50:50	Max Rated	3 gpm	±2.5%	1.42 - 1.58 gpm	
		11 L/min		5,2 - 5,8 L/min	
	Min	.6 gpm	±4.5%	.2733 gpm	
	rated	2,5 L/min	14.570	1,1 - 1,4 L/min	
40:60	Max Rated	2.5 gpm	±2.5%	1.44 - 1.56 gpm	.94 - 1.06 gpm
		9,5 L/min		5,4 - 5,9 L/min	3,6 - 4,0 L/min
	Min rated	.5 gpm	±4.5%	.2832 gpm	.1822 gpm
		2,8 L/min		1,6 - 1,8 L/min	1,0 - 1,2 L/min
33:67	Max Rated	2.2 gpm	±2.5%	1.42 - 1.53 gpm	.6778 gpm
		8,5 L/min		5,5 - 5,9 L/min	2,6 - 3,0 L/min
	Min rated	.45 gpm	±4.5%	.2832 gpm	.1317 gpm
		1,7 L/min		1,06 - 1,22 L/min	0,48 - 0,64 L/min

The maximum variation is at 5000 psi (350 bar) differential between legs with the high pressure leg being the higher flow.

©2024 Sun Hydraulics 2 of 2