


Flow divider valve

CAPACITY: 6 - 30 gpm / CAVITY: T-33A

sunhydraulics.com/model/FSED

Flow dividers are sliding-spool, pressure-compensated devices used to split oil flow to two different branches of a circuit in a designated ratio. These valves are suitable for applications that use the following: unidirectional hydraulic motors, hydraulic cylinders where flow division in one direction only is required, and multiple circuits that are serviced from one pump supply.

TECHNICAL DATA NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Cavity	T-33A	
Series	3	
Capacity	6 - 30 gpm	
Maximum Operating Pressure	5000 psi	
Divisional Accuracy at Max Input Flow	±3.5%	
Divisional Accuracy at Minimum Input Flow	±6.5%	
Pressure Drop at Maximum Rated Input Flow	250 psi	
Pressure Drop at Minimum Rated Input Flow	30 psi	
Rated Input Flow with 33/67 Split	4.4 - 22 gpm	
Rated Input Flow with 40/60 Split	5 - 25 gpm	
Rated Input Flow with 50/50 Split	6 - 30 gpm	
Valve Hex Size	1 1/4 in.	
Valve Installation Torque	150 - 160 lbf ft	
Model Weight	1.35 lb.	
Seal kit - Cartridge	Buna: 990-033-007	
Seal kit - Cartridge	Polyurethane: 990-033-002	
Seal kit - Cartridge	Viton: 990-033-006	

©2024 Sun Hydraulics 1 of 2

OPTION SELECTION EXAMPLE: FSEDXAN

TECHNICAL FEATURES

- All flow divider and divider/combiner cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size).
- Operating characteristics cause the leg of the circuit with the greatest load to receive the higher percentage of flow in dividing mode. If a rigid mechanism is used to tie actuators together, the lead actuator may pull the lagging actuator and cause it to cavitate.
- In applications involving rigid mechanisms between multiple actuators, operating inaccuracy will cause the eventual lock-up of the system. If the mechanical structure is not designed to allow for the operating inaccuracy inherent in the valve, damage may occur.
- In motor circuits, rigid frames or mechanisms that tie motors together, and/or complete mechanical synchronized motion of the output shaft of the motors, either by wheels to the pavement or sprockets to conveyors, will contribute to cavitation, lock-up and/or pressure intensification.
- Variations in speed and lock-up can be attributed to differences in motor displacement, motor leakage, wheel diameter variance and friction of wheels on the driving surface.
- This valve is a divider only; any attempt to flow backwards through the valve is not advised.
- Dividers with unequal ratios have the higher flow at port 4.
- Below the minimum flow rating there is not enough flow for the valve to modulate. It is effectively a tee. If flow starts at zero and rises, there will be no dividing control until the flow reaches the minimum rating.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.

PERFORMANCE CURVES

Split	Input Flow	Rated Accuracy	Maximum Possible Flow Variations		
	,		High Flow Leg	Low Flow Leg	
50:50	Max Rated	30 gpm	±3.5%	14 - 16 gpm	
		120 L/min		56 - 64 L/min	
	Min rated	6 gpm	±6.5%	2.6 - 3.4 gpm	
		23 L/min		10 - 13 L/min	
40:60	Max Rated	25 gpm	±3.5%	14.1 - 15.9 gpm	9.1 - 10.9 gpm
		95 L/min		54 - 60 L/min	35 - 41 L/min
	Min rated	5 gpm	±6.5%	2.7 - 3.3 gpm	1.7 - 2.3 gpm
		19 L/min		10.2 - 12.6 L/min	6,4 - 8,8 L/min
33:67	Max Rated	22 gpm	±3.5%	14.0 - 15.5 gpm	6.5 - 8.0 gpm
		85 L/min		54 - 60 L/min	25 - 31 L/min
	Min	4.4 gpm	±6.5%	2.7 - 3.3 gpm	1.1 - 1.7 gpm
	rated	17 L/min	20.576	10,3 - 12,5 L/min	4,5 - 6,7 L/min

The maximum variation is at 5000 psi (350 bar) differential between legs with the high pressure leg being the higher flow.

©2024 Sun Hydraulics 2 of 2