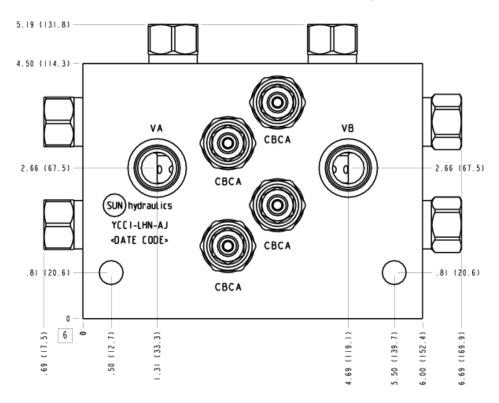

MODEL YCCI


Dual cushion lock assembly with flow dividers

CAPACITY: 1.5 - 8 gpm

sunhydraulics.com/model/YCCI

This assembly is a combination of the cushion lock circuit and flow dividers. It provides flow division to two actuators in both directions. It provides overrunning load control in both directions. It provides cross-port relief protection. It provides thermal relief protection. It supplies make-up oil. It flushes hot and dirty oil out of the actuators.

TECHNICAL DATA NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFIGURATION SECTION.

Body Type	Line mount
Capacity	1.5 - 8 gpm
Mounting Hole Diameter	.42 in.
Mounting Hole Depth	Through
Mounting Hole Quantity	2

NOTES: • All SAE o-ring porting per ISO 11926. All NPTF porting per ANSI B1.20.1. All BSPP porting parallel thread.

- For detailed information regarding the cartridges contained in this assembly, click on the models codes shown in the Included Components tab.
- *Important:* Carefully consider the maximum system pressure. The pressure rating of the manifold is dependent on the manifold material, with the port type/size a secondary consideration. Manifolds constructed of aluminum are not rated for pressures higher than 3000 psi (210 bar), regardless of the port type/size specified.

2024 Sun Hydraulics 1 of 8

Standard Screw Adjustment

CONTROL

Dual cushion lock assembly with flow dividers

CAPACITY: 1.5 - 8 gpm

(L) FUNCTIONAL SETTING RANGE

Continued from previous page

(N)

(A)

OPTION SELECTION EXAMPLE: YCCILHNAJ

1000 - 4000 psi w/25 psi Check (70 - 280 bar

w/ 1,7 bar Check), 3000 psi (210 bar)

SEAL MATERIAL

Buna-N

С	Tamper Resistant - Factory Set		w/ 1,7 bar Check), 3000 psi (210 bar) Standard Setting	V	Viton
		A	1000 - 4000 psi w/4 psi Check (70 - 280 bar w/ 0,3 bar Check), 3000 psi (210 bar) Standard Setting		
		В	400 - 1500 psi w/4 psi Check (28 - 105 bar w/ 0,3 bar Check), 1000 psi (70 bar) Standard Setting		
		I	400 - 1500 psi w/25 psi Check (28 - 105 bar w/ 1,7 bar Check), 1000 psi (70 bar) Standard Setting		

Α	3:1 (with CBCA primary cartridge, 3:1 pilot ratio, standard capacity counterbalance valve)
Н	10:1 (with CBCHX primary cartridge, Fixed setting, 10:1 pilot ratio, standard capacity counterbalance valve)
G	4.5:1 (with CBCGX primary cartridge, Fixed setting, 4.5:1 pilot ratio, standard capacity counterbalance valve)
Α	3:1 (with CBCAX primary cartridge, Fixed setting, 3:1 pilot ratio, standard capacity counterbalance valve)
Н	10:1 (with CBCH primary cartridge, 10:1 pilot ratio, standard capacity counterbalance valve)
G	4.5:1 (with CBCG primary cartridge, 4.5:1 pilot ratio, standard capacity counterbalance valve)

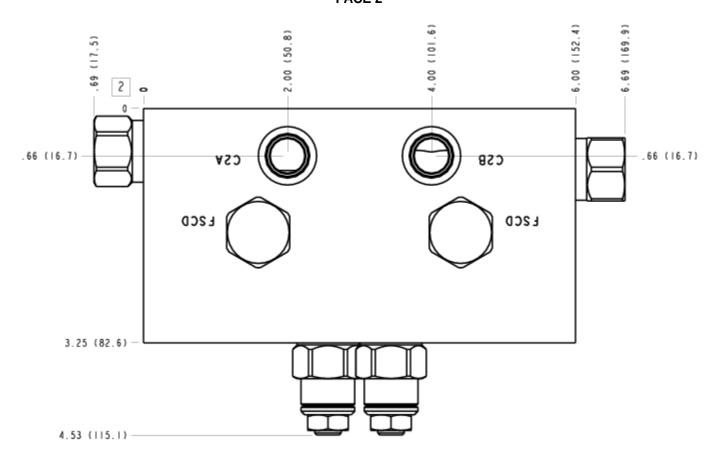
INCLUDED COMPONENTS

PRIMARY CARTRIDGE

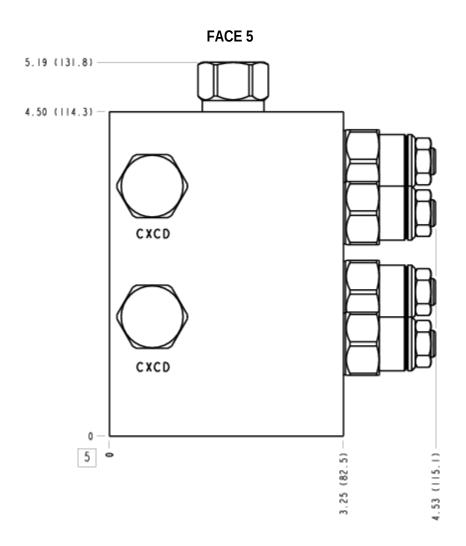
Part	Description	Quantity
CBCALHN	Cartridge - Primary	4
CXCDXCN	Cartridge	4
FSCDXAN	Cartridge	2

TECHNICAL FEATURES

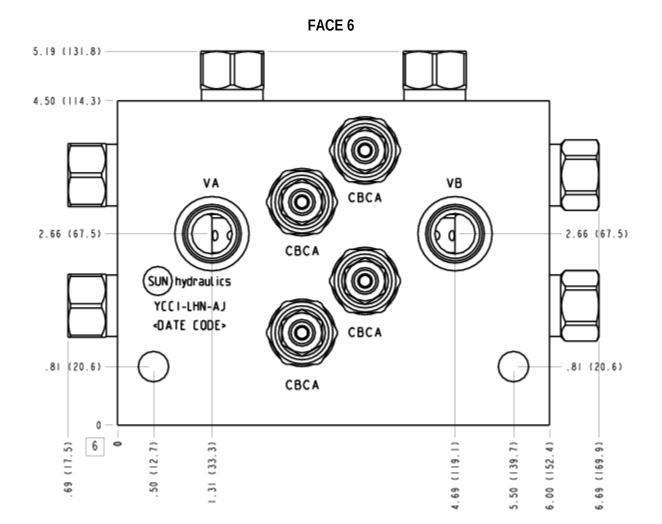
- The counterbalance valves should be set at 1.3 times the maximum load induced pressure.
- Operating characteristics cause the leg of the circuit with the greatest load to receive the higher percentage of flow in dividing mode. If a rigid mechanism is used to tie actuators together, the lead actuator may pull the lagging actuator and cause it to cavitate.
- Below the minimum flow rating there is not enough flow for the valve to modulate. It is effectively a tee. If flow starts at zero and rises, there will be no dividing control until the flow reaches the minimum rating.

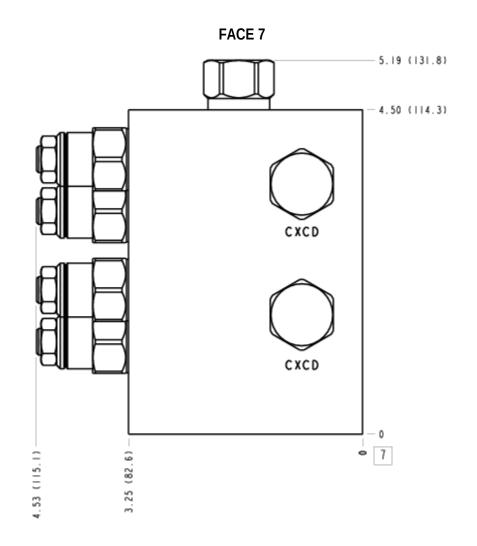

©2024 Sun Hydraulics 2 of 8

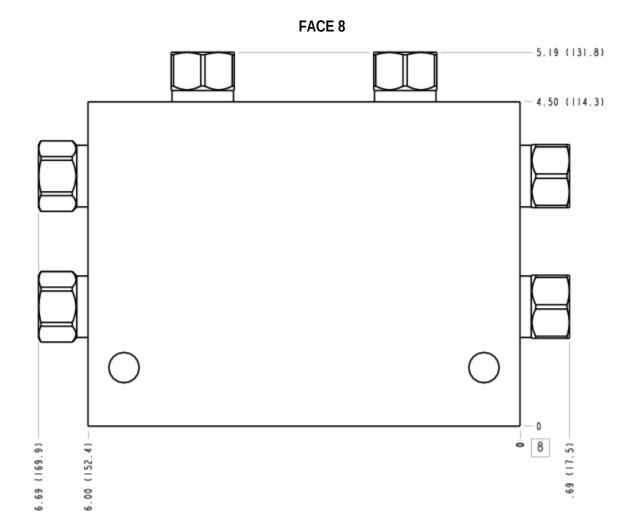
MANIFOLD FACES

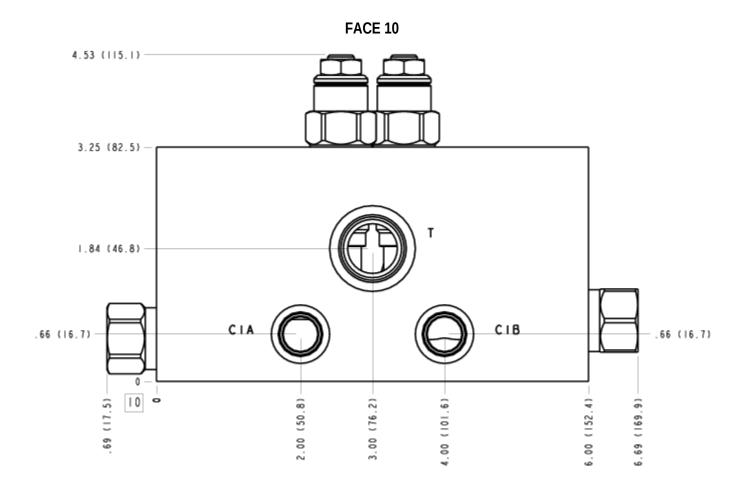

FACE GRID

1	2	3	4
5	6	7	8
9	10	11	12


FACE 2


©2024 Sun Hydraulics 3 of 8


©2024 Sun Hydraulics 4 of 8


©2024 Sun Hydraulics 5 of 8

©2024 Sun Hydraulics 6 of 8

©2024 Sun Hydraulics 7 of 8

©2024 Sun Hydraulics 8 of 8